Given F a locally compact, nondiscrete, non-archimedean field of characteristic ≠ 2 and R an integral domain such that a non-trivial smooth character χ: F → R* exists, we construct the (reduced) metaplectic group attached to χ and R. We show that it is in the expected cases a double cover of the symplectic group over F. Finally, we define a faithful infinite dimensional R-representation of the metaplectic group analogue to the Weil representation in the complex case
Weil Representation and Metaplectic Groups over an Integral Domain / Chinello, G; Turchetti, D. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - 43:6(2015), pp. 2388-2419. [10.1080/00927872.2014.893729]
Weil Representation and Metaplectic Groups over an Integral Domain
Chinello G;
2015
Abstract
Given F a locally compact, nondiscrete, non-archimedean field of characteristic ≠ 2 and R an integral domain such that a non-trivial smooth character χ: F → R* exists, we construct the (reduced) metaplectic group attached to χ and R. We show that it is in the expected cases a double cover of the symplectic group over F. Finally, we define a faithful infinite dimensional R-representation of the metaplectic group analogue to the Weil representation in the complex caseFile | Dimensione | Formato | |
---|---|---|---|
Chinello_Weil-representation_2015.pdf
solo gestori archivio
Note: https://www.tandfonline.com/doi/full/10.1080/00927872.2014.893729
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
319.41 kB
Formato
Adobe PDF
|
319.41 kB | Adobe PDF | Contatta l'autore |
Chinello_Weil-representation_post-print_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
508.43 kB
Formato
Adobe PDF
|
508.43 kB | Adobe PDF | |
Chinello_Weil-representation_erratum_2015.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
152.63 kB
Formato
Adobe PDF
|
152.63 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.